Complex Number (Problem Set)

Srijan Chattopadhyay

August 30, 2025

- 1. Suppose $A(z_1)$, $B(z_2)$, $C(z_3)$, $D(z_4)$ are 4 points in the argand plane such that AB is perpendicular to CD. Prove that $\frac{z_1-z_2}{z_3-z_4}$ is purely imaginary.
- 2. Show that the point a' is the reflection of the point a in the line $z\bar{b}+\bar{z}b+c=0$, if $a'\bar{b}+\bar{z}a'+c=0$.
- 3. If $|z-2+i| \leq 2$, find the greatest and least value of |z|. (Can you do it without algebra?)
- 4. If ω is complex cube root of unity and a, b, c are such that

$$\frac{1}{a+\omega} + \frac{1}{b+\omega} + \frac{1}{c+\omega} = 2\omega^2$$

and

$$\frac{1}{a+\omega^2}+\frac{1}{b+\omega^2}+\frac{1}{c+\omega^2}=2\omega$$

then find the value of

$$\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}.$$

5. If a, b, c are distinct integers and $\omega \neq 1$ is a cube root of unity, find minimum value of

$$|a + b\omega + c\omega^2| + |a + b\omega^2 + c\omega|$$

6. If A, B and C represent the complex numbers z_1 , z_2 and z_3 respectively on the complex plane and the angles at B and C are each equal to $\frac{1}{2}(\pi - \alpha)$, then prove that

$$(z_2 - z_3)^2 = 4(z_3 - z_1)(z_1 - z_2)\sin^2\left(\frac{\alpha}{2}\right).$$

7. If z_1 and z_2 are two complex numbers such that

$$\left| \frac{z_1 - z_2}{z_1 + z_2} \right| = 1,$$

then prove that

$$\frac{iz_1}{z_2} = k$$
, where k is a real number.

Find the angle between the lines from the origin to the points $z_1 + z_2$ and $z_1 - z_2$ in terms of k.

8. If a is a complex number such that |a| = 1, then find the value of a, so that the equation $az^2 + z + 1 = 0$ has one purely imaginary root.

1

- 9. If $n \in \mathbb{N} > 1$, find the sum of real parts of the roots of the equation $z^n = (z+1)^n$.
- 10. Interpret the following equations geometrically on the Argand plane.

(i)
$$|z-1|+|z+1|=4$$

(ii)
$$\arg(z+i) - \arg(z-i) = \frac{\pi}{2}$$

(iii)
$$1 < |z - 2 - 3i| < 4$$

(iv)
$$\frac{\pi}{4} < \arg(z) < \frac{\pi}{3}$$

(v)
$$\log_{\cos\frac{\pi}{3}} \left\{ \frac{|z-1|+4}{3|z-1|-2} \right\} > 1$$

11. If ω is the nth root of unity and z_1, z_2 are any two complex numbers, then prove that

$$\sum_{k=0}^{n-1} \left| z_1 + \omega^k z_2 \right|^2 = n \left\{ |z_1|^2 + |z_2|^2 \right\}, \quad \text{where } n \in \mathbb{N}.$$

12. Let $\sum_{i=1}^4 a_i = 0$ and $\sum_{j=1}^4 a_j z_j = 0$, then prove that z_1, z_2, z_3 and z_4 are concyclic, if

$$a_1a_2|z_1-z_2|^2 = a_3a_4|z_3-z_4|^2$$
.

- 13. Prove that all roots of $11z^{10} + 10iz^9 + 10iz 11 = 0$ have unit modulus (or equivalent |z| = 1).
- 14. Let a,b,c be real numbers. Let z_1,z_2,z_3 be complex numbers such that $|z_k| = 1$ (k = 1,2,3) and $\frac{z_1}{z_2} + \frac{z_2}{z_3} + \frac{z_3}{z_1} = 1$ Find $|az_1 + bz_2 + cz_3|$.
- 15. Let complex numbers α and $\frac{1}{\bar{\alpha}}$ lie on the circles $(x-x_0)^2+(y-y_0)^2=r^2$ and $(x-x_0)^2+(y-y_0)^2=4r^2$ respectively. If $z_0=x_0+iy_0$ satisfies the equation $2|z_0|^2=r^2+2$, then $|\alpha|=?$
- 16. If $|z| \ge 3$, then determine the least value of $|z + \frac{1}{z}|$.
- 17. If $|z + \frac{4}{z}| = 2$, then find the minimum and maximum values of |z|.
- 18. For any integer k, let $\alpha_k = \cos(\frac{k\pi}{7}) + i\sin(\frac{k\pi}{7})$. Then find the value of $\frac{\sum_{i=1}^{12} |\alpha_{k+1} \alpha_k|}{\sum_{k=1}^{3} |\alpha_{4k-1} \alpha_{4k-2}|}$
- 19. Let $a, b \in \mathbb{R}$ and $a^2 + b^2 \neq 0$. Suppose $S = \{z \in \mathbb{C} : z = \frac{1}{a + ibt}, t \in \mathbb{R}, t \neq 0\}$. If z = x + iy and $z \in S$, find locus of z.
- 20. Let z be a complex number satisfying $|z|^3 + 2z^2 + 4\bar{z} 8 = 0$, where \bar{z} denotes the complex conjugate of z. Let the imaginary part of z be nonzero. $|z|^2 = ? |z \bar{z}|^2 = ? |z|^2 + |z + \bar{z}|^2 = ? |z + 1|^2 = ?$
- 21. z_1, z_2, \cdots be a sequence of complex numbers defined by $z_1 = i$ and $z_{n+1} = z_n^2 + i$ for $n \ge 1$. Then $|z_{2024} - z_1| = ?$
- 22. Consider the two subsets of \mathbb{C} , $A = \{\frac{1}{z} : |z| = 2\}$ and $B = \{\frac{1}{z} : |z 1| = 2\}$. Identify A and B as geometric figures.
- 23. Find the minimum possible value of $|z|^2 + |z 3|^2 + |z 6i|^2$, where z is a complex number.
- 24. Let $0 < a_1 < a_2 < \dots < a_n$ be real numbers. Show that the equation $\frac{a_1}{a_1-x} + \frac{a_2}{a_2-x} + \dots + \frac{a_n}{a_n-x} = 2015$ has exactly n real roots.
- 25. If z_1, z_2, z_3 are non-zero complex numbers such that

$$\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}.$$

Then prove that z_1, z_2, z_3 lie on a circle passing through the origin.

26. What is the area of the figure in the complex plane enclosed by the origin and the set of all points $\frac{1}{z}$ such that

$$(1-2i)z + (-2i-1)\overline{z} = 6i$$
?

27. What is the area of the region in the complex plane consisting of all points z satisfying both

$$\left| \frac{1}{z} - 1 \right| < 1 \quad \text{and} \quad |z - 1| < 1?$$

- (|z| denotes the magnitude of a complex number, i.e. $|a+bi| = \sqrt{a^2 + b^2}$.)
- 28. Let z = x + iy be a complex number with x and y rational and with |z| = 1.
 - (a) Find two such complex numbers. (b) Show that $|z^{2n}-1|=2|\sin n\theta|$, where $z=e^{i\theta}$.